The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling.
نویسندگان
چکیده
The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.
منابع مشابه
Crosstalk of arabinogalactan protein, auxin, gibberellin, and callose in Al-treated Tea seedlings
Arabinogalactan proteins (AGP) are a class of cell surface plant peptidoglycans which have been implicated in root elongation and signal transduction pathways. AGPs function not only as markers of cellular identity but also as signaling molecules, which might initiate signal transduction. Aluminum promotes the elongation of tea (Camellia sinensis L.) roots. Although some mechanisms by which Al ...
متن کاملGibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice
Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investiga...
متن کاملTomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis
Plants have evolved and adapted to different environments. Dwarfism is an adaptive trait of plants that helps them avoid high-energy costs under unfavourable conditions. The role of gibberellin (GA) in plant development has been well established. Several plant dehydration-responsive element-binding proteins (DREBs) have been identified and reported to be induced under abiotic and biotic stress ...
متن کاملLight regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway.
Light regulation of gibberellin (GA) biosynthesis occurs in several species, but the signaling pathway through which this occurs has not been clearly established. We have isolated a new pea (Pisum sativum) mutant, long1, with a light-dependent elongated phenotype that is particularly pronounced in the epicotyl and first internode. The long1 mutation impairs signaling from phytochrome and crypto...
متن کاملThe multiple contributions of phytochromes to the control of internode elongation in rice.
Although phyAphyBphyC phytochrome-null mutants in rice (Oryza sativa) have morphological changes and exhibit internode elongation, even as seedlings, it is unknown how phytochromes contribute to the control of internode elongation. A gene for 1-aminocyclopropane-1-carboxylate oxidase (ACO1), which is an ethylene biosynthesis gene contributing to internode elongation, was up-regulated in phyAphy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 171 4 شماره
صفحات -
تاریخ انتشار 2016